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Abstract

Various algorithms are described, developed for the dm
density modi®cation package, which have not been
described elsewhere. Methods are described for the
following problems: determination of the absolute scale
and overall temperature factor of a data set, by a
method which is less dependent on data resolution than
Wilson statistics; an ef®cient interpolation algorithm for
averaging and its application to re®nement of averaging
operators; a method for the automatic determination of
averaging masks.

1. Introduction

Since the paper of Wang (1985) phase improvement by
density modi®cation has become a routine part of the
structure solution process. This success has been in¯u-
enced by the automation of the calculations in a robust
manner, and the use of fast and ef®cient algorithms.
Density-modi®cation methods by a number of authors
have been implemented in the dm program (Cowtan,
1994), but the development required some additional
algorithms for scaling, averaging and mask determina-
tion which are described here.

2. Scaling

Many density-modi®cation and direct-methods techni-
ques require the reduction of observed re¯ection data to
an absolute scale (i.e. in electrons). In some cases (for
example if E's/U's are required) it is necessary to
calculate an overall temperature factor.

This has traditionally been accomplished through the
use of Wilson statistics (Wilson, 1949), which provide an
estimate of the expected mean scattered intensity at any
scattering angle, based on the assumption of atoms
placed randomly in a unit cell.

For small molecules this assumption works well,
however for proteins it breaks down for two reasons.

(i) Minimum atomic separations mean that the atoms
are not randomly distributed, at large scales they appear
to be very uniformly distributed. The result of this is that
low-resolution scattering (around 6 AÊ ) is much weaker
than predicted by Wilson statistics. The distribution of

interatomic distances also lead to other features in the
scattering curve (Blessing et al., 1996).

(ii). Solvent voids within the protein cause long-
range variations in the local mean density, leading to
large features at very low resolutions (below 8 AÊ ). These
features are dependent on the shape of the solvent
boundary, and vary in size in proportion to the contrast
between the protein and solvent regions.

As a result, the Wilson curve may typically only be
used to model the scattering from a protein at better
than 5 AÊ resolution. Since the diffraction data may only
extend to 3 AÊ or less and contain large errors at the
resolution limit, any scale and/or temperature factor
derived from it may contain large errors.

A better model can be constructed which represents
at least the ®rst class of features in the scattering curve.
Instead of using a theoretically generated scattering
curve, the scattering curves from a number of different
structures, with atomic motion removed, are combined
to form an empirical curve to which the observed data
may be ®tted. The curves must be normalized to account
for the number of ordered scatterers in the unit cell, for
almost all proteins this may be effectively estimated
from the unit-cell volume and the solvent content.

The solvent is considered to contribute only to the
origin re¯ection. In this way the method accounts for the
uniformity of the atomic distribution (1) but neglects the
shape of the solvent boundary (2). As a result, the
scaling may typically be based on all the data higher
than 8 AÊ , rather than the more typical 4±5 AÊ .
Murshudov (1997) has suggested that when the solvent
envelope is known this information may be used to
further improve the empirical scaling curve.

By Parseval's theorem (see for example Bricogne,
1993b), the expected intensity in reciprocal space is
linked directly to the variance of the scattering density
in real space,
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The protein scattering curve may then be calculated
from the variance of the density within the protein
region of a map, over a range of structures, at a range of
resolutions. The expected scattered intensity within a
particular resolution range is then given by the differ-



ence in the variances of maps bounding that resolution
range, with a correction for the shift in mean density due
to solvent.

The averaged intensity scattering curve for protein
density only, obtained over a range of protein structures,
is shown in Fig. 1. Since the density of re¯ections in
reciprocal space is proportional to the cell volume, this
quantity is independent of the cell volume. Below 8 AÊ

the curve begins to show envelope-speci®c features.
Possible improvements to the method include incor-

poration of information about the shape of the solvent
boundary, and the inclusion of a typical range of thermal
parameters over the atoms in the structure. The effect of
the range of thermal parameters has been treated in
some detail by Blessing et al. (1996), however it is not
immediately useful for density modi®cation because the
thermal-parameter range is not modelled in current
histogram-matching techniques, and often the data
resolution is insuf®cient to determine the extra para-
meter.

In order to calculate the scale factor required to bring
the data onto an absolute scale, the parameters B and s
must be determined. The values are calculated which
give the best ®t between a theoretical scattering curve
(either from Wilson statistics or the empirical method
described above) and the experimental data.

jFabsolutej2 � sjFobsj2 exp�2B sin2���=�2�: �2�
A test data set, O6-methylguanine-DNA-methyl-
transferase (Moore et al., 1994), was used to compare the
methods. Experimental data was available to 2.4 AÊ

resolution, but the data was truncated at various reso-
lutions, and the parameters B and s estimated by both
methods. The Wilson plot for this data is roughly linear
in the resolution range 5.0±2.4 AÊ , therefore, only data at
higher than 5 AÊ were used for scaling against the Wilson
curve. All the data was used for scaling against the
empirical curve. The results are shown in Table 1.

Note that the estimates of B and s using the empirical
curve are insensitive to the data resolution when it is
better than 4.5 AÊ . In contrast, the Wilson curve cannot
be calculated at 5 AÊ or less and gives misleading results

at less than 4.0 AÊ and the scale factor s only approaches
the empirical curve estimate at high resolution.

The scaling parameters determined by this method
have proven effective both for histogram matching and
Sayre's equation as employed by Zhang & Main (1990).
Once the data has been put on an absolute scale, the
origin F(000) term can be calculated from the number of
electrons in the unit cell. This estimate has proven
suf®ciently accurate in our tests for the calculation of
maximum-entropy centroid maps (Bricogne, 1993a).

3. Interpolation

The ef®ciency of the FFT algorithm means that it is
normal to calculate electron-density maps on uniformly
sampled grids. However, some calculations, including
the averaging of regions of the density map related by
non-crystallographic symmetry (NCS), require the value
of the density at points away from the grid sites. Rather
than calculating density values by direct Fourier
summation, it is ef®cient to perform a grid-based FFT
and then interpolate for the density at the required
position.

The choice of an effective interpolant presents
problems. The simplest function, tri-linear interpolation,
involves a linear combination of the densities at the
eight grid points at the corners of a box enclosing the
required coordinate. The interpolated density, however,
fails to represent peaks between grid points and is not
continuously differentiable. Another common inter-
polant is 64-point tri-cubic interpolation, or a faster 32-
point approximation. This function is much slower to
compute.

A better solution to the interpolation problem can be
found in the family of b-splines, which are the self-
convolutions of the top-hat function, de®ned as follows,

Fig. 1. Expected intensity over volume as a function of resolution for a
protein only structure in (eÿ)2 AÊ ÿ3.

Table 1. Estimates for B and s using Wilson statistics and
empirical curve at different resolutions

Values from re®ned structure hBi � 50:2, s � 0:77 using the CCP4
(Collaborative Computational Project, Number 4, 1994) sfall program.

Resolution Wilson curve Empirical curve
limit (AÊ ) B s B s

2.5 54.1 0.85 47.0 0.81
3.0 53.0 0.88 45.2 0.78
3.5 46.1 1.07 46.3 0.79
4.0 27.1 1.73 45.9 0.78
4.5 ÿ19.6 4.68 48.4 0.80
5.0 Ð Ð 58.9 0.87

488 MISCELLANEOUS ALGORITHMS FOR DENSITY MODIFICATION



b0�x� � 1 �ÿ1=2< 1=2�
0 �otherwise�; �3�

bm�x� �
Z 1
ÿ1

b0�y�bmÿ1�xÿ y�dy: �4�

The ®rst three b-splines are shown in Fig. 2. Note that
the linear b-spline b1 is composed of two linear
segments, the quadratic b-spline b2 is composed of three
quadratic segments.

Since the b-splines are constructed by self-convolu-
tion, their Fourier transforms take on particularly simple
forms. The Fourier transform of b0 is the sync-function,
sin��s�=�s where s is the coordinate in Fourier space.
Since convolution of the b-splines corresponds to the
multiplication of their Fourier coef®cients, the Fourier
transform of bm is �sin��s�=�s�m�1.

The application of these functions to interpolation is
hinted at by Bricogne (1974) and has been developed by
Grosse & Hobby (1994). Interpolation can be treated as
a weighted summation of the density at grid points
around the target coordinate.

It is possible to use the b-splines as weighting func-
tions for interpolation. For example, convolution of the
grid density with b0 is equivalent to taking the density
from the nearest grid point to the target point. Convo-
lution with b1 corresponds to linear interpolation. Since
this is equivalent to multiplying the map coef®cients by
sync-functions in reciprocal space, it can be seen that
using the b-splines as interpolants will produce a
smoothed density map.

To obtain a better interpolated density, the map
should be sharpened by the same amount that it is
smoothed by interpolation. Thus, instead of inter-
polating from the density map itself, the Fourier
coef®cients of the map (structure factors) are ®rst
divided by the Fourier coef®cients of the b-spline
�sin��s�=�s�m�1, to produce a sharpened map.

In three dimensions, interpolation can be performed
by interpolating along each of the three grid directions
in turn, or equivalently by convolution with a three-
dimensional function constructed from the product of
the three one-dimensional b-splines. The sharpening
function in reciprocal space correction is the product of
the three sync-functions. Non-orthogonal grids present
no problem, since the distortion of the convolution
function is compensated for by the distortion of the
sharpening function in reciprocal space. However, care

is required in hexagonal space groups, since in this case
(only) structure factors which are symmetry equivalent
can require different sharpening coef®cients. If the
sharpening is performed in P1, then this problem never
arises.

In three dimensions, the full calculation is described
as follows,

Fb�h; k; l� � F�h; k; l�

�
�
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�b�u1; v1;w1� � FFT�Fb�h; k; l��; �6�
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X
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bm�nu�u1 ÿ u��bm�nv�v1 ÿ v��

� bm�nw�w1 ÿ w���b�u1; v1;w1�; �7�
where u1; v1;w1 take values in the range 0±1 on a grid of
sampling nu; nv; nw. (7) may be factorized for ef®cient
computation.

A detailed comparison has been made between linear
and quadratic b-splines (b1 and b2) and two other
interpolation methods: conventional linear interpolation
and 32-point cubic interpolation. Density values are
calculated for points chosen at random in the unit cell,
®rst by direct Fourier summation, then by each of the
interpolation methods. The correlation between the
exact Fourier values and the interpolated values gives a
measure of the quality of the interpolating function. The
relationship of the standard deviations of the two
samples gives some idea of the degree of smoothing
caused by interpolating. The time taken by each method
varies roughly as the number of density values included
as shown in Table 2.

Fig. 2. b-Splines order 0, 1 and 2.

Table 2. Comparison of interpolation methods

Interpolation method Number of points

Linear 8
Cubic (approx.) 32
Linear b-spline (b1) 8
Quadratic b-spline (b2) 27
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Tests were conducted using O6-methylguanine-DNA-
methyltransferase (Moore et al., 1994) which has an
orthorhombic unit cell, although tests in monoclinic and
hexagonal space groups yield very similar results. As a
stringent test, maps were calculated from the re®ned
structures, and the corresponding structure factors
sharpened to give Boverall � 0.

In Fig. 3(a), the correlation coef®cient between the
Fourier density and the interpolated density is shown for
different samplings of the source grid, expressed in
terms of Shannon rate (the ratio of the Nyquist spacing
for the data to the grid spacing, see for example Beau-
champ & Yuen, 1979). Thus, a Shannon rate of 1 is the
coarsest grid on which a map may be calculated at a
particular resolution, and Shannon rate of 2 is a grid
twice as ®ne in each direction.

On a ®ne grid, the functions all perform well, however
when the initial grid is coarse, the sharpening of the data
in reciprocal space leads to signi®cantly better results.
The quadratic b-spline gives signi®cantly better inter-
polation than the cubic interpolant, and the linear b-
spline gives better interpolation than simple linear
interpolation.

To estimate how much smoothing of the map takes
place during the interpolation calculation, the standard
deviations of interpolated values (formed as part of the
correlation coef®cient) were compared with the Fourier
values. The results are shown in Fig. 3(b). Note that the
linear and cubic interpolation schemes both smooth the
map badly at low Shannon rates. The reciprocal space
sharpening in the b-spline case successfully corrects for
this smoothing. At low Shannon rates the maps are very
slightly over sharpened.

b-Splines have also been applied to the contouring of
maps on ®ne grids by Ten Eyck et al. (1997).

3.1. Re®nement of averaging operators

The b-spline interpolation method can also be applied
in the re®nement of the transformation matrices repre-
senting the NCS operations. This is normally performed
by adjusting the averaging operator (expressed in Euler
angles, for example) to maximize the correlation
between related areas of density.

This can be ef®ciently achieved using a minimization
technique, with steps taken in the direction of the
gradient of the correlation function with respect to the
six parameters describing the symmetry operation; i.e.
three rotational and three translational parameters.

Using the quadratic b-spline, the derivatives of the
density at a point can be simply calculated with respect
to the grid axes by replacing the b-spline b2 along that
axis with its derivative b02 (consisting of three linear
segments). Thus, the gradient along the u direction can
be calculated as,

@�

@u
�u; v;w� �

X
u1

X
v1

X
w1

b02�nu�u1 ÿ u��b2�nv�v1 ÿ v��

� b2�nw�w1 ÿ w���b�u1; v1;w1�;
�8�

(and similarly for v and w). It is computationally ef®-
cient to calculate the interpolated density value and the
gradients simultaneously.

The gradient along an arbitrary coordinate direction
may be obtained from a set of orthogonal gradients by
application of the chain rule, however in the case of a
non-orthogonal grid the gradients along grid directions
are not independent. An intermediate set of orthogonal
gradients must therefore be constructed.

Let the orthogonal angstrom vector xi be related to
the fractional vector uj by the orthogonalization matrix
qij, whose inverse matrix is the fractionalization matrix

Fig. 3. Comparison between interpolated and direct-Fourier density
with Shannon rate. (a) Correlation between interpolated and
Fourier density. (b) Scale factor between interpolated and Fourier
density.
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Qij. Therefore,

xi �
X
j�1;3

qijuj i � 1; 3; �9�
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Qijxj: �10�

Then, by the chain rule,

@�

@ui

�
X
j�1;3

@xj

@ui

@�

@xj

�
X
j�1;3

qji

@�

@xj

; �11�

and by inversion,
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Thus, the orthogonal gradients can be obtained from the
fractional gradients by application of the transpose of
the fractionalization matrix.

Once the gradients of the density with respect to the
orthogonal axes are known, the derivatives with respect
to the six parameters of the averaging operator ri (three
rotation and three translation) describing the symmetry
operator can be derived by application of the chain rule,

@�

@ri

�
X
j�1;3

@xj

@ri

@�

@xj

i � 1; 6 �13�

where the derivatives @xj=@ri will depend on the choice
of parameters ri for the averaging operator. The
derivative of the correlation C of the electron densities
follows directly,

C � ��rot ÿ � �rot

���2 ÿ �2���2
rot ÿ �rot

2��1=2
�14�

@C
@ri

� � @�rot

@ri
ÿ � @�rot
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���2 ÿ �2���2
rot ÿ �rot

2��1=2;
�15�

where � is the untransformed density, �rot is the trans-
formed density, and the averages are calculated over the
volume of the averaging mask. (The standard deviation
of the rotated density in the denominator is assumed to
be constant.) The actual re®nement procedure is
performed by calculating the gradient of the correlation
with respect to the six parameters. The components of
this gradient give the direction for adjusting the para-
meters. A three-point line search is then performed
along this direction to determine the actual shifts to
apply to each of the parameters.

4. Automatic NCS mask determination

Averaging is one of the most powerful constraints
available for phase improvement, however it is also the

least automatic. While the determination of a solvent
mask is routinely automated (Wang, 1985), the process
of generating an averaging mask delimiting that volume
of crystal space which obeys the NCS operators is still
often achieved by laborious use of a graphics package.

Some progress has been made towards automation
using the local density correlation function between
regions of density related by the averaging operator to
distinguish the volume over which that operator applies
(Vellieux et al., 1995). The full automation of this
method for simple cases is described here (a similar
method, unpublished, has been developed by Volbeda,
1997).

The local correlation function gives the agreement
between the unrotated and rotated maps as a function of
position,

C�x� � h��rotix ÿ h�ixh�rotix
�h�2ix ÿ h�i2x��h�2

rotix ÿ h�roti2x��1=2
�16�

where h ix represents an average calculated over a
sphere around the point x. A number of dif®culties exist
in the generation of an averaging mask from a local
correlation map.

(i) Proper/improper symmetry. If the NCS forms a
closed group (a proper symmetry), then the NCS
operators will map the whole of the multimer onto itself,
thus the local correlation will be high over the whole of
the multimer. If the NCS forms an open group
(improper symmetry), then each operator will only map
a monomer onto one other, therefore the local corre-
lation will only be high over a monomer. Mixed
symmetries are also possible.

(ii) The averaging mask does not obey crystal-
lographic symmetry or cell repeat, rather it is de®ned
precisely once in crystal space. It must, therefore, be
represented over that volume in real space; it may be
larger than the cell in some direction, and will not
normally fall within the volume (u,v,w) =
(0...1,0...1,0...1).

(iii) If an NCS operator lies perpendicular to a special
direction, then the mask may repeat along that special
direction. Thus, for example, a twofold NCS axis
perpendicular to a twofold crystallographic axis leads to
a mask which repeats along the crystallographic axis. In
this case arbitrary limits must be placed on the mask
extent along this axis.

4.1. Method

The method is divided into three steps.
4.1.1. Calculation of local correlations. For speed,

correlations are calculated on a coarse search grid. A
sphere is constructed about each search grid point, and
density values calculated for unrotated and rotated
maps on a ®ne grid within that sphere. The ®ne grid is at
twice the Nyquist spacing (i.e. at 2.0 AÊ resolution the
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®ne grid has 2.0 AÊ spacing). The radius of the sphere is
then chosen to cover about 400 points, and the local
correlation is calculated over these points. Initially the
grid is much larger than a unit cell, typically
(ÿ1...2,ÿ1...2,ÿ1...2) in fractional coordinates.

4.1.2. Masking. A cutoff level is chosen so that if all
points above the cutoff level are within the mask, the
expected volume of the monomer of multimer will be
enclosed. The correlation map is then converted into a
mask with this cutoff.

4.1.3. Mask continuity testing. All the separate
contiguous volumes within the mask are identi®ed. The
largest single connected volume is isolated. The bounds
of the correlation grid are then reset to enclose this
volume, with a generous border (Fig. 4).

This process is repeated over four cycles, after which
the correlation grid bounds have been reduced suf®-
ciently to give a detailed mask outline. Some indication
of a successful mask determination is obtained from the
number and size of the separate masked features at each
stage, if the mask consistently features one volume much
larger than any others, then it is probably correct.

The calculation of correlations around every grid
point on the search grid can be very time consuming. In
practice it has been found to be suf®cient to calculate
correlations only at every second or third grid point
along each axis, and then generate the rest by linear
interpolation. This reduces the computational require-
ment by 1/8 or 1/27.

In the case of NCS axes along special directions, the
user must specify limits to the search box along a
particular cell axis. These limits are then ®xed for the
whole calculation. This is not a complete solution, but
does account for the most common cases.

An example auto-mask, calculated using RNAse
(SÏ evcÏõÂk et al., 1991) MIR data, is shown here. The
structure has twofold improper NCS, thus the local-
correlation mask covers only one monomer. The mole-
cule and the mask are shown in Fig. 5. In this case the

mask closely follows the boundaries of the protein, with
only one loop and a few side chains outside the mask.
The technique appears to be insensitive to the quality of
the map, however, for very poor starting maps (e.g. SIR
or OAS) it is sometimes necessary to increase the
number of points included in the local correlation
sphere.

5. Conclusions

Density modi®cation is now a routine part of
structure solution, often using the algorithms
described here. A scaling algorithm using all the
data, which is robust against limited data resolution
and detailed features of the scattering curve, allows
the reliable application of histogram matching
without human intervention. High-speed interpola-
tion from coarse map grids also means that aver-
aging operator re®nement may be applied
automatically at every stage of the phase-improve-
ment calculation, and also allows the use of
exhaustive search methods for averaging mask
determination rather than the painstaking analysis
of operators and density using computer graphics.

Examples of structure solutions using the dm program
and a multi-crystal version include the GTPase-acti-
vating domain from p50rhoGAP (Barrett et al., 1997),
and the cofactor-binding fragment of the LysR family
member CysB (Tyrrell et al., 1998).

The authors would like to thank Eric Grosse for
advice on b-splines and Dave Schuller and Fred
Vellieux for helpful discussions on averaging

Fig. 4. Largest connected volume identi®cation and grid rescaling in
the automatic NCS-masking calculation. Fig. 5. Auto-NCS mask calculated for RNAse using MIR data.
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calculations and masks. Dr Cowtan is grateful to
the United Kingdom BBSRC (grant number 87/
B03785) and the CCP4 project for supporting this
work.
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